日本データベース学会のみなさま
京都大学 杉山と申します。
1週間前になりましたので、再度ご案内致します。
ACM SIGIR 東京支部では、「12月13日 17時」から、
Suppawong Tuarob 准教授 (Mahidol University, Thailand) をお招きし、
"Faster, Sooner, Cheaper: Can Social Media Reflect Real-World Phenomena?"
というタイトルで、ご講演いただきます。
詳細は、以下のとおりです。どなたでも無料で参加できますが、以下のURLから
事前登録をお願い致します。
多くのみなさまのご参加を、お待ちしております。
----------
題目 (Title): "Faster, Sooner, Cheaper: Can Social Media Reflect Real-World
Phenomena?"
講演者 (Speaker): Suppawong Tuarob (Mahidol University, Thailand)
日時 (Date): 2022年12月13日 17:00-18:00 (December 13th, 2022, 17:00-18:00)
場所 (Venue): Zoomによるオンライン (Online via Zoom)
* 以下の事前登録フォームから、12月12日17:00までに、参加者の情報をご記入ください。
後ほど、ご登録いただいた電子メールアドレスに、Zoom URLをお送り致します。
(Please register your information via the following registration form by
December 12th, 17:00 (JST).
We will send Zoom URL to your e-mail address later.)
https://docs.google.com/forms/d/e/1FAIpQLSeoQnokmaK_GcMZ5YwwfFcoS2pC-0PGulK…
概要 (Abstract):
Globally, online communities generate enormous volumes of data every day.
A common use of social networks is to give a timely and cost-effective
means of reflecting on real-world events. Although the applications of
information derived from social networks are numerous, only a tiny
portion of them are committed to improving society. For instance,
real-time analysis of Twitter data has been used to model earthquake
warning detection systems, identify medical and emergency needs during
recovery from natural disasters (such as the Haiti Earthquake), detect
the spread of influenza-like illnesses, and uncover abusive behaviors
in social networks. In addition, several studies have examined the use of
social media to monitor population-wide and individual health in the real
world, including drinking issues, epidemics, drug misuse, and mental
illness. Numerous research has shown that social media might be utilized
to track depression and public conversation during the COVID-19 epidemic.
This talk will examine applications that establish online social networks
as viable information sources for estimating real-world phenomena.
略歴(Biography):
Suppawong Tuarob received his PhD in computer science and engineering
and MS in industrial engineering from the Pennsylvania State University
and his BSE and MSE in computer science and engineering from the University
of Michigan-Ann Arbor. Currently, he is an Associate Professor of Computer
Science at Mahidol University, Thailand. His research involves data mining
in large-scale scholarly, social media, and healthcare domains.
対象(Target Audience):
ACM SIGIR 東京支部会員、一般
(Member of Tokyo ACM SIGIR Chapter, Public audience)
主催(Organizer):
本セミナーは、ACM SIGIR 東京支部の主催です。上記のURLから事前登録をして
くだされば、どなたでも無料で参加できます。
(This seminar is organized by Tokyo ACM SIGIR Chapter. Anyone can join if
you register your information via the above registration form URL.)
-----
杉山 一成
京都大学 情報学研究科 社会情報学専攻
(総合研究12号館112号室)
E-mail: kaz.sugiyama(a)i.kyoto-u.ac.jp, zakugus(a)gmail.com
URL: http://www.db.soc.i.kyoto-u.ac.jp/~sugiyama/
みなさま:
国立情報学研究所の神門典子(かんど のりこ)と申します。
直前のご連絡で恐縮ですが、来週12月8日(木)15時より
標記の講演会をハイブリッドで開催いたします。
社会が複雑化するのしたがって、とくにCOVID-19の影響でさまざまな
生きづらさを感じやすくなっているといわれています。そのような中で、
Mental Disorderをより早い段階でSNSなどから検知することの重要性が
高まっております。今回は、eRisk (Early Detection of Mental Disorder
by Monitering Social Media)プロジェクトを2017年から主導されている
スイスUSI大学のProf Fabio Crestaniにご講演いただきます。ぜひ、奮って
ご参加ください。みなさまのご参加をお待ちしております。
--------
<日時/Data Time> Thursday, Dec. 8th, From 15:00-
<場所/Place> Room 1810, NII, and Online
オンライン参加の方は下記よりご登録ください。
講演会前日にZoomリンクをお送りします
https://forms.gle/ZJNKZneLGcF1qUYM8
<演題/TITLE> Measuring Depression in Social Media: Results from the First
5 Years of eRisk
<言語> English
<概要/ABSTRACT>
Internet provides massive amounts of data. Millions of users publish
contents and interact with one another in a daily fashion. Several
studies have shown that the words people use (also in online content)
are indicative, through distinctive linguistic patterns, of their
psychological state. In 2017, through a fortunate set of events, we
started the eRisk project. eRisk, which stands for Early Risk Prediction
on the Internet, is concerned with the early detection of signs of
psychological problems from users' posts in social media. In this talk
I give an overview of the activities of eRisk as part of CLEF (the
Conference and Lab of the Evaluation Forum) over the past few years,
with particular attention to the early detection of signs of depression.
I also discuss how for depression we passed from the early detection, to
the estimation of the level of severity, to the latest task (2023)
concerned with estimation of the individual symptoms. I conclude
summarising the lessons learned so far and pointing at what might come
next, also for other mental disorders.
<関連書籍/Related Book>
Fabio Crestani, David E. Losada, Javier Parapar (eds.)
"Early Detection of Mental Health Disorders by Social Media Monitoring:
The First Five Years of the eRisk Project"
Springer, 2022.
https://link.springer.com/book/10.1007/978-3-031-04431-1
<講演者について/About the Speaker>
Prof Fabio Crestani is a Full Professor at the Faculty of Informatics of
the Universita’ della Svizzera Italiana (USI) in Lugano, Switzerland,
since 2007. Previously he was a professor at the University of
Strathclyde in Glasgow, UK and the University of Padua, Italy. He holds
a degree in Statistics from the University of Padua (I) and a MSc and
PhD in Computing Science from the University of Glasgow.
Prof Crestani works in Information Retrieval, Text Mining and
Digital Libraries. In these areas he has published extensively on both
theoretical and experimental aspects. He also served in the organising
and program committees of several conferences and in the editorial
boards of several journals.
<参加登録フォーム/Registration Form>
https://forms.gle/ZJNKZneLGcF1qUYM8
- オンライン参加:事前に参加登録をお願いいたします。
ご登録くださった方に、講演会前日にZoomリンクをお送りいたします。
- 現地参加:事前登録なしの参加も歓迎です。ですが、
より良い準備や急な変更があった場合の連絡などのために、
できれば登録をお願いできれば幸いです
みなさまのご参加をお待ちしております
神門 典子
--
Noriko Kando
National Institute of Informatics, Japan