日本データベース学会のみなさま
京都大学 杉山と申します。
ACM SIGIR 東京支部では、「12月13日 17時」から、
Suppawong Tuarob 准教授 (Mahidol University, Thailand) をお招きし、
"Faster, Sooner, Cheaper: Can Social Media Reflect Real-World Phenomena?"
というタイトルで、ご講演いただきます。
詳細は、以下のとおりです。どなたでも無料で参加できますが、以下のURLから
事前登録をお願い致します。
多くのみなさまのご参加を、お待ちしております。
----------
題目 (Title): "Faster, Sooner, Cheaper: Can Social Media Reflect Real-World
Phenomena?"
講演者 (Speaker): Suppawong Tuarob (Mahidol University, Thailand)
日時 (Date): 2022年12月13日 17:00-18:00 (December 13th, 2022, 17:00-18:00)
場所 (Venue): Zoomによるオンライン (Online via Zoom)
* 以下の事前登録フォームから、参加者の情報をご記入ください。後ほど、
ご登録いただいた電子メールアドレスに、Zoom URLをお送り致します。
(Please register your information via the following registration form.
We will send Zoom URL to your e-mail address later.)
https://docs.google.com/forms/d/e/1FAIpQLSeoQnokmaK_GcMZ5YwwfFcoS2pC-0PGulK…
概要 (Abstract):
Globally, online communities generate enormous volumes of data every day.
A common use of social networks is to give a timely and cost-effective
means of reflecting on real-world events. Although the applications of
information derived from social networks are numerous, only a tiny
portion of them are committed to improving society. For instance,
real-time analysis of Twitter data has been used to model earthquake
warning detection systems, identify medical and emergency needs during
recovery from natural disasters (such as the Haiti Earthquake), detect
the spread of influenza-like illnesses, and uncover abusive behaviors
in social networks. In addition, several studies have examined the use of
social media to monitor population-wide and individual health in the real
world, including drinking issues, epidemics, drug misuse, and mental
illness. Numerous research has shown that social media might be utilized
to track depression and public conversation during the COVID-19 epidemic.
This talk will examine applications that establish online social networks
as viable information sources for estimating real-world phenomena.
略歴(Biography):
Suppawong Tuarob received his PhD in computer science and engineering
and MS in industrial engineering from the Pennsylvania State University
and his BSE and MSE in computer science and engineering from the University
of Michigan-Ann Arbor. Currently, he is an Associate Professor of Computer
Science at Mahidol University, Thailand. His research involves data mining
in large-scale scholarly, social media, and healthcare domains.
対象(Target Audience):
ACM SIGIR 東京支部会員、一般
(Member of Tokyo ACM SIGIR Chapter, Public audience)
主催(Organizer):
本セミナーは、ACM SIGIR 東京支部の主催です。上記のURLから事前登録をして
くだされば、どなたでも無料で参加できます。
(This seminar is organized by Tokyo ACM SIGIR Chapter. Anyone can join if
you register your information via the above registration form URL.)
-----
杉山 一成
京都大学 情報学研究科 社会情報学専攻
(総合研究12号館112号室)
E-mail: kaz.sugiyama(a)i.kyoto-u.ac.jp, zakugus(a)gmail.com
URL:
http://www.db.soc.i.kyoto-u.ac.jp/~sugiyama/