┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
┃ 日本データベース学会 Newsletter
┃ 2024年10月号 (Vol. 17, No. 5)
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
本号では国際会議ICML 2024、KDD 2024、ECML PKDD 2024の参加報告をご寄稿
いただいております。会議の動向やご自身の研究内容などのご紹介となります。
本号ならびにDBSJ Newsletterに対するご意見あるいは次号以降に期待する内容
についてご意見がございましたらnews-com [at] dbsj.orgまでお寄せください。
DBSJ Newsletter
編集委員会
(担当編集幹事 丸橋 弘治)
========================================================================
----
目次
----
1. ICML 2024
参加報告
金森 憲太朗(富士通株式会社)
2. KDD 2024
参加報告
小幡 紘平(大阪大学 産業科学研究所 櫻井・松原研究室)
3. ECML PKDD 2024
参加報告
鈴木 浩史(富士通株式会社)
========================================================================
■1■ ICML 2024
参加報告
金森 憲太朗(富士通株式会社)
2024年7月21日から27日にかけて、オーストリアのウィーンにて、機械学習分野の
トップカンファレンスである ICML 2024 (Forty-First International Conference
on Machine Learning)
が開催されました。私は採択された論文発表のために現地
参加しましたので、その報告をさせていただきます。
今年は9473件の論文が投稿され、2610件が採択されました(採択率27.6%)。投稿
数は前年比44%増加しており、機械学習研究の競争がますます激化していることが
見て取れます。採択論文のうち、査読評価の高かった上位3.5%(335件)が
Spotlight Paper
に、さらに上位1.5%(144件)が Oral Paper
にそれぞれ選定
されました。発表形式は、すべての論文がポスター発表を行い、Oral Paper
に
選定された144件については口頭発表も行われました。
会議は、最初の2日間が Expo(スポンサー企業によるセッション)とチュートリ
アル、続く3日間が本会議、そして最後の2日間がワークショップというスケジュ
ールでした。傾向としては、本会議の採択論文だけでなく、チュートリアルやワ
ークショップのテーマも、その多くが大規模言語モデル(LLM)に関するものでし
た。LLM
関連論文は、Transformer の解析のような理論研究だけでなく、少デー
タ環境での fine-tuning
など実用的なテクニックに関する研究も数多く見受けら
れ、LLM
研究の広がりを肌で感じました。一方で、強化学習、連合学習、公平性
や解釈性といったトピックの研究も依然として活発でした。
今年からの特色として、Main Conference Track
とは別に Position Paper Track
が新設されました。これは、機械学習分野に重要な貢献をするものの、伝統的な
学会論文の型にはまらない研究を推奨し、研究コミュニティの意見を必要とする
タイムリーなトピックに関する議論を促進することを目的としているようです。
今年は、投稿された286件のポジション論文のうち75件が採択されました(採択率
26.2%)。個人的には、「機械学習研究コミュニティは否定的な結果に関する論文
も受け入れるべき(提案手法が SOTA
に勝てなかったとしても、研究コミュニテ
ィにとって価値がないとは限らない)」という主張をした論文 "Position:
Embracing Negative Results in Machine Learning (Karl et al.)"
が特に印象
に残りました。
最後に我々の採択論文 "Learning Decision Trees and Forests with Algorithmic
Recourse (Kanamori et al.)"
について簡単に紹介します。アルゴリズム的償還
(algorithmic recourse)は、機械学習モデルから肯定的な判定結果(例えば、
融資の承認)を得るためにユーザがとるべきアクションを説明するフレームワーク
であり、実社会におけるデータ駆動型意思決定の信頼性を向上させる技術として近
年注目されています。この論文では、ユーザにとって現実的なアクションの存在を
保証しつつ、高精度な決定木およびランダムフォレストを効率よく学習する技術を
提案しました。上位3.5%に相当する Spotlight Paper
に選定されたこともあり、
ポスター発表では大学・企業問わず多くの研究者と実りのある議論を行うことがで
きました。
ICML 2025
は、カナダのバンクーバーにて2025年7月13日から19日の日程で開催さ
れる予定です。論文投稿や現地参加を検討されてみてはいかがでしょうか。
著者紹介:
金森 憲太朗(富士通株式会社)
富士通株式会社 人工知能研究所 研究員。2020年北海道大学大学院情報科学研究
科情報理工学専攻修士課程修了。同年、日本学術振興会特別研究員(DC1)。2022
年北海道大学大学院情報科学院情報科学専攻博士後期課程修了(短縮修了)。同
年、富士通株式会社入社、現在に至る。博士(情報科学)。2023年より JST
ACT-X「次世代AIを築く数理・情報科学の革新」領域一期生。機械学習の説明可能
性や解釈可能性に関する研究に従事。
------------------------------------------------------------------------
■2■ KDD 2024
参加報告
小幡紘平(大阪大学 産業科学研究所 櫻井・松原研究室)
2024年8月25日から8月29日まで、スペインのバルセロナで開催されたACM
SIGKDD
International Conference on Knowledge Discovery and Data Mining(以下、
KDD)に参加しました。ご存知の通り、KDDはデータマイニング分野のトップカン
ファレンスです。今年のリサーチトラックでは2046本の投稿のうち411本が採択さ
れ(採択率20.1%)、全ての採択論文が口頭とポスターで発表されました。依然
として投稿数の増加傾向がみられており、KDD’24では投稿に際して昨年から以下
の変更がなされました。
(1)採否判定を採択、不採択、再提出の3種類とした。
(2)一著者あたりの最大投稿数を7件に制限した。
(3)著者のうち最低でも一人を査読者として登録することを義務付けた。
結果として、査読者の数が昨年の1051人から2619人に増加し、各投稿に対して最
低4件以上のレビューが行われたそうです。さらに、査読者の割り当てに地理情
報が利用され、各投稿に対して同じ地域からの査読者が過半数を占めないように
配慮されたそうです。
私たちの研究室からは、リサーチトラックで2本の研究論文が採択されました。
一本目は「Fredformer: Frequency Debiased Transformer for Time Series
Forecasting」というタイトルで、筆頭著者はXihao Piaoです。この研究では、
Transformerモデルにおける周波数バイアスの問題を初めて詳細に分析し、この
現象が時系列予測に与える影響を明らかにしました。従来のモデルが低周波成分
に偏り、高周波成分を無視する傾向を持つことを指摘し、これを軽減するための
新しいモデル「Fredformer」を提案しました。このモデルでは異なる周波数帯域
の特徴を公平に学習させることで、バイアスを解消しています。
二本目は私が筆頭著者で、「Mining of Switching Sparse Networks for Missing
Value Imputation in Multivariate Time Series」というタイトルの論文を紹介
しました。この研究では統計モデルによる多次元時系列データの欠損値補完手法
「MissNet」を提案しました。MissNetは、グラフィカルラッソにより推定した疎
なネットワーク(変数間の関係性)の活用とネットワークの変化に基づいたセグ
メンテーションにより、高精度な欠損値補完と高い解釈性を実現した手法です。
会議期間中はイベントアプリWhovaを通じて参加者間の交流が図られました。私は
ランニングのコミュニティに参加し、参加者とビーチサイドで早朝ランを行い、
海からの日の出を見ました。日本からの参加者のコミュニティも作成され、50人
近くの方々と会場付近のバルで交流しました。美味しい料理を堪能しながら、他
大学の研究者や企業の方々と研究や就職活動についてお話しできたいい機会でし
た。一方で、バルセロナは歴史的な建築と豊かな文化に彩られた美しい街ではあ
りますが、私が耳にしただけでも会議参加者のうち3件のスリ被害・未遂が会場外
で発生しており、安全面について不安を感じる場面もありました。
KDD’25はカナダのトロントで開催される予定です。また、次回からは投稿締切が
8月と2月の2回に分かれることが決まっています。興味のある方は論文投稿および
参加の検討をされてはいかがでしょうか。
著者紹介:
小幡紘平(大阪大学 産業科学研究所 櫻井・松原研究室)
2020年名古屋大学農学部応用生命化学科卒業。2023年大阪大学大学院情報科学研
究科博士課程前期修了。大阪大学大学院情報科学研究科博士課程後期在学中。時
系列データマイニングの研究に従事。
------------------------------------------------------------------------
■3■ ECML PKDD 2024
参加報告
鈴木 浩史(富士通株式会社)
2024年9月9日から13日まで、リトアニアのビリニュスで開催された European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD 2024)
に参加し発表を行ってきました。
ECML PKDD
は機械学習とデータマイニングに関する難関国際会議の一つであり、
ICML および KDD
の欧州版として位置付けられます。今年の Research Track で
は投稿件数826本に対して採択件数198本(採択率24%)でした。
EDML PKDD
は、機械学習とデータマイニングという二つの大きな分野を両軸とし
ているだけでなく、Applied Data Science Track
により応用研究の間口を広げた
り、Demo Track
を取り入れたりしています。このため、発表の多様性が高いこと
が ECML PKDD
の特色と言えるのではないかと思いました。発表者は口頭・ポスタ
ーの二つをこなす必要がある珍しい形式で準備が大変ですが、研究成果の広い宣
伝と密な議論とを行えるのは有意義なのではないでしょうか。また、本会議の前
後に併設ワークショップが40個ほど開催されており、終始にぎわいのある会議で
した。
基調講演では Google DeepMind、マックス・プランク研究所、Spotify、ドルトム
ント工科大学、Stats Perform
からの講演があり、ここでも発表の多様性がうか
がえました。深層学習のデータ暗記と汎化性能との関係、現代におけるベンチマ
ークへの問題提起、実サービスでユーザ体験を向上させた話、機械学習の省エネ
ルギー化とその課題、スポーツ追跡データの利活用とその課題、に関して各1時間
程度の講演が行われました。
ベストペーパーは “CAM-Based Methods Can See through Walls”
というユニー
クなタイトルで、画像分類モデルに対する著名な説明法 Class Activation Map
(CAM) が「モデルがまったく見ていなかった領域にもスコアを付けてしまう」こ
とを理論的にも実験的にも実証したものでした。これには、今まで信じられてき
た説明法の大きな欠点を指摘したものとして、とても衝撃を受けました。このよ
うなデファクト・スタンダードを疑問視する姿勢は研究者として大切にしていき
たいものですね。
私の単著論文 “LayeredLiNGAM: A Practical and Fast Method for Learning a
Linear Non-Gaussian Structural Equation Model”
は Research Track
に採択
されたもので、統計的因果探索の代表的手法である DirectLiNGAM
を高速化しま
した。LayeredLiNGAM
という名の通り層が重要で、従来は変数の因果的順序を一
変数ずつ逐次的に求めていたところを、タイブレークが起きる変数群をまとめた
層の因果的順序を求めるように、理論的な動作保証を伴って改良しました。また
、計算機実験では精度を維持しつつ高速化を達成しました。タイブレークがない
場合が最悪ケースですが、このとき LayeredLiNGAM
の動作は DirectLiNGAM に一
致し、その他のケースでは高速化に寄与するので実用的です。
すでに来年の公式情報が出ており、ECML PKDD 2025
は2025年9月15日から19日の
日程でポルトガルにて開催予定とのことです。ECML PKDD
は機械学習とデータマ
イニングの二大分野から多様な発表が集まる国際会議です。会議全体の雰囲気は
フランクで活気があります。開催地域が必ずヨーロッパであることも人によって
は注目ポイントです。あと、常連の方いわく、毎回食べ物が美味しいらしいです
(昼食やレセプションはもちろん、ポスターセッション中などもおいしい料理が
提供されました)。興味のある方は、論文投稿や参加をぜひ検討してみてはいか
がでしょうか。
著者紹介:
鈴木 浩史(富士通株式会社)
2019年に北海道大学大学院情報科学研究科博士後期課程修了後、同年に株式会社
富士通研究所(2021年の組織再編により富士通株式会社に統合され本社直下の富
士通研究所となった)に入社し、現在に至る。2024年より JST ACT-X「次世代AI
を築く数理・情報科学の革新」領域二期生。組合せ列挙と最適化、機械学習、因
果探索に関する研究に従事。人工知能学会、電子情報通信学会の各会員。博士(
情報科学)。
========================================================================
---
丸橋弘治
富士通株式会社